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Abstract. This paper describes an ongoing implementation of an open
source library dealing with parametric representation of dynamic geome-
try constructions. We show how some current issues in standard dynamic
geometry environments, such as computing envelopes of lines which are
not primitive objects known by the geometric system, can be efficiently
solved using the correspondence between geometry and algebra. We also
propose enriching the tool (or macro) mechanism, available in some envi-
ronments, with our parametric approach. Finally, some problems arising
from the algebraic method considered are also studied.
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1 Introduction

The development, in the late eighties, of The Geometer’s Sketchpad [1] and Cabri
[2] marked the birth of the dynamic geometry (DG) paradigm. Since then, a
myriad of dynamic geometry environments have been released (too many to be
listed here, see [3]) and, some of which have been primarily used in secondary
mathematical education.

Almost simultaneously, promising results were obtained in automatic reason-
ing in elementary geometry driven by a new class of algebraic approaches, mainly
the Groebner bases method [4] and the one due to Wu [5]. Intense theoretical
research on both methods was conducted (see, for instance, [6–9]), and software
packages, mostly using Wu’s method, were made public [8, 10, 11]. A further de-
velopment of the automatic theorem–proving method proposed by Kapur was
described in [12]. It concluded aiming for a deeper interleaving of dynamic ge-
ometry and automated discovery paradigms. Such a wish was partialy fulfilled
by linking The Geometer’s Sketchpad with a Maple library for parametric de-
scription of constructions in [13] using Wu’s method, and with Groebner bases in
GDI [14, 15], a DG prototype using Mathematica and CoCoA [16] as back–end
symbolic engines.

In this paper we continue pursuing the above stated goal. We describe a
preliminary implementation of an open source library designed to extend current
abilities of standard DG environments. Section 2 summarizes the state of the art
in DG on deriving new curves and some of our previous findings on this subject.



A problem concerning the generation of the envelopes of families of general lines
is posed, and the different answers provided by some well known DG systems
are given. In Section 3 we introduce the open source library. The rationale for
using free tools is discussed and we show how to use the library for solving
some problems related to curve deriving. Some problems concerning mismatchs
in the correspondence between algebra and geometry are also discussed. The
paper concludes pointing out the next items in our work of enhancing the DG
paradigm with more powerful symbolic tools.

2 Curve Derivation: State of the Art

An informal definition of the DG paradigm is that unconstrained parts of the
constructions can be moved and, as they are, all other elements automatically
self–adjust, preserving dependence relationships and constraints [17]. An imme-
diate consequence of this behavior is that it allows us to visualize the path of
an object that depends on another object while this one is dragged. If the de-
pendent object is a point, in general its trace provides a locus, whereas if it has
higher dimension, the path can be used to suggest related geometric elements,
such as envelopes. Loci generation has been listed as one of the five properties
needed by a geometry system to be considered dynamic [18].

2.1 Finding Loci and Envelopes in Dynamic Geometry
Environments

Most dynamic geometry systems implement loci generation using what we have
called an interactive approach [19]. The basic strategy is simple: in order to
compute the locus of a point depending somehow on another, that lies on a pre-
defined path, one just needs to sample this path and register the position of the
locus point for each member of the sample. The list of these positions constitutes
a subset of the locus. Usually, DG systems will join, using some ad–hoc heuris-
tics, the points on contiguous positions, returning an object similar to the other
basic ones in the construction. The main exception to this joining approach is
Geometry Expert [10]. So, the loci obtained in the way sketched above are just a
collection of screen pixels, the system has no algebraic information about them,
and sometimes they behave aberrantly when plotting them due to continuity
issues (see [15] for this problem).

This loci–computing strategy is also used for dealing with envelopes of fami-
lies of lines in standard DG systems. The Geometer’s Sketchpad and Geometry
Expert suggest envelopes by plotting a collection of family lines, while Cabri and
Cinderella [20] share this approach but are sometimes able to return them as a
line in the case of simple families. It must be noted that Cabri claims that “for
a locus, the algorithm produces its algebraic equation if its degree is no greater
than 6. For loci whose points are of very different magnitudes, numerical errors
appear very rapidly as the degree increases” [21]. Although this algorithm has
not been made public by the vendor, it seems that it is very unstable, and the



returned results are frequently erroneous even for simple cases [22]. For instance,
computing an astroid as the envelope of a moving segment with each end on one
of a pair of perpendicular axes, Cabri gives different equations when constraining
the segment to the upper and lower half planes, as shown in Fig. 1. Furthermore,
the degree of the equations cannot be explained as a rounding error, but a wrong
algorithmic approach to finding the real sextic.

Fig. 1. Equations returned by Cabri for the upper and lower halves of an astroid.

2.2 A Symbolic Approach to Curve Derivation

The application of symbolic methods for loci generation, although restricted to
algebraic curves, generalizes the class of obtainable loci, returns their algebraic
expressions, and behaves in a uniform way for all construction instances. Since
Recio and Vélez did not deal with loci in [12], we proposed in [23] a simple
extension of their automated discovery proposal and showed that it can efficiently
be implemented in a DG environment. This extension has also been added to
JSXGraph [24], a library for interactive geometry, and its incorporation into
GeoGebra [25] is currently under development [26].

A similar strategy was used in [27] for symbolic computation of envelopes
and other derived curves. Since the implementation partially used proprietary
software (Mathematica) and the DG prototype just worked under Windows, we
decided to rewrite the algorithms as an open source library and to develop it as
an add–on for standard DG environments.

2.3 Computing Envelopes of Geometric Loci

We describe in this subsection a problem currently unsolvable in DG systems. It
deals with deriving objects from non basic objects. As said above, most systems
are not able to compute the equations of loci or envelopes. Consider, for instance,
an offset curve of a parabola, that is, the envelope of a family of equal radius



circles centered at a point lying on the parabola. While standard DG systems
show this envelope by plotting a reduced list of such circles, GDI returns it as
a simple line and also provides its equation. Figure 2 illustrates these offsets in
Cinderella (left) and GDI (right).

Fig. 2. The offset of a parabola as plotted by Cinderella (left) and GDI (right).

Nevertheless, plotting some family members for visualizing the envelope only
works if the lines are basic objects in the environment. Replacing the circle
moving along the parabola by another circle, obtained as a locus, no standard
system, as far as we know, can compute the envelope. There is just a solution:
moving the circle, with its trace activated. But note that not all systems can trace
loci. For instance, current version of GeoGebra cannot trace them (although
GeoGebra 4.0 will). Besides that, using the trace option is hard in order to get
a descriptive picture of the envelope.

Consider an ellipse built as a locus (following the gardener’s method) and let
A,B be its foci, where A is a fixed point and B lies on a line. Figure 3 shows
the envelope of these ellipses, when B moves along its parent line, in Cinderella
(left) and GeoGebra 4.0 Beta (right).

In the above situation, GDI would also fail, since it could not return this
ellipse as a locus. Note that the ellipse we are trying to build is the locus of all
points X in the plane such that distance(A,X) + distance(B,X) is a constant.
Being B a semifree point, the algebraic answer should be, as GDI returns, the
whole plane (or a bidimensional subset). And asking for the envelope of non
linear elements is forbidden in GDI.

In order to overcome the above situation, we roughly proceed as follows. We
compute the ellipse as a locus in a 4–dimensional space (where two variables are
the locus ones, and the other pair comes from B), and project it over the space
of the first pair of variables (see next Section for a more detailed description).

3 The Open Source Library

There are two approaches for extending DG systems with new symbolic, alge-
braic related, abilities. The first one consists of incorporating the algorithms in



Fig. 3. The traces of a moving ellipse obtained as locus in Cinderella (left) and Ge-
oGebra 4.0 Beta (right).

the heart of the system, while the second one uses preexistent software (mainly
computer algebra systems, CAS) and connects them somehow with the DG en-
vironment. Apart from historical reasons concerning the places where Wu and
Groebner methods first appeared, we have no doubt about the importance of the
developers milieu when making such a decision. So, Chinese systems mainly use
the first approach, while academic proposals coming from the occidental world
use external CAS, since their cost is a minor point when distributing the sys-
tem. Paradigmatic examples are Geometry Expert and Geometry Expressions
[28]. Nevertheless, the global systemic crisis, with its present and upcoming cuts
in educational and non–profit research budgets, the globalization of the infor-
mation and some centrifugal tendencies in academy, help to explain a renewed
interest in providing free access to DG systems and related tools. The growing use
of GeoGebra and its probably settlement as the de facto standard in secondary
mathematical education is a vivid example of it. Apart from its free character,
the open source model followed by GeoGebra also helps explain its success, since
it involves a bigger part of the educational community and reacts faster to user
requirements and updates than other proprietary DG software does. Same rea-
sons apply to a recent CAS, Sage [29], a free open source mathematics software
system licensed under the GPL, whose declared mission is “creating a viable free
open source alternative to Magma, Maple, Mathematica and Matlab”. So, using
Sage as development platform, we decided to rewrite from scratch our previous
algorithms related to automatic discovery in geometry.

3.1 The Structure of the Library: Examples

Currently, there are about a dozen of basic geometric predicates, and some inter-
nal functions, needed for internal work or consistency checkings. The interested
reader can download the library as a Sage worksheet or text from [30]. The con-
structive predicates are: FreePoint, Line, Circle, MidPoint, PointOnObject,
ParallelLine, PerpendicularLine, TangentLine, IntersectionObjectObject,



Locus, Locus2 and Envelope. When invoked, each predicate adds to a dictionary,
called Todo, the corresponding geometric element together with some relevant
information. The elementary action of adding a point, for instance, is performed
through the function

def FreePoint(pnt,absc,orde):

"""Adds the point $pnt$ with coordinates $(absc,orde)$

to the geometric construction."""

Todo.update({pnt:{’coords’:(absc,orde),

’parents’:Set([]),

’type’:’FreePoint’,

’hist’:[’FreePoint’,pnt,absc,orde],

’eq’:Set([])}})

where partial indenting has been done for legilibility. So, the evaluation of the
command FreePoint(’P’,2,-1) defines the point P (2,−1), with type ’FreePoint’,
and without parents or equation, being the remaining keyword for future use.

Defining the midpoint of a pair of points is done through the function

def MidPoint(n,p,q):

"""Constructs the midpoint $n$ of points $p$ and $q$."""

if n in Todo.keys():

eq=Todo[n][’eq’]

parents=Todo[n][’parents’]

temp=Todo[n][’coords’]

else:

eq=Set([])

parents=Set([])

temp=(BoVar.pop(),BoVar.pop())

eq=eq.union(Set([temp[0]-1/2*(x(p)+x(q)),

temp[1]-1/2*(y(p)+y(q))]))

parents=parents.union(Set([p,q]))

Todo.update({n:{’coords’:temp,

’type’:’BoundedPoint’,

’eq’:eq,

’parents’:parents,

’hist’:[’MidPoint’,n,p,q]}})

where it should be noted that multiple definition for points is allowed. This func-
tion also introduces the second type for 0–dimensional objects, BoundedPoint.
There are other two general types for objects in the library, Line, for 1–dimensional
objects, and Plane, for any geometric object with dimension 2.

3.2 Finding Envelopes of Loci

Recalling the unsolved envelope problem in 2.3 we define the ellipse as follows:



FreePoint(’A’,4,0)

FreePoint(’P1’,0,0)

FreePoint(’P2’,0,1)

Line(’y’,’P1’,’P2’)

PointOnObject(’B’,’y’)

FreePoint(’M’,2,2)

FreePoint(’N’,2,7)

Line(’MN’,’M’,’N’)

PointOnObject(’P’,’MN’)

Circle(’c1’,’A’,’M’,’P’)

Circle(’c2’,’B’,’N’,’P’)

IntersectionObjectObject(’X’,’c1’,’c2’)

Locus2(’loc’,’X’,’B’,’P’)

Asking for the definition of the special object loc we get

{’type’: ’Locus2’,

’tracer’: ’X’,

’hist’: [’Locus2’, ’loc’, ’X’, ’B’, ’P’],

’parents’: {’X’, ’P’},

’mover’: ’P’,

’eq’: {x1, 4*orde^2*x2^2 - 4*orde*x2^3 - 36*absc^2 - 100*orde^2

+ x2^4 - 32*absc*orde*x2 + 16*absc*x2^2 + 164*orde*x2 - 82*x2^2

+ 144*absc + 81},

’implicit’: False}

where the locus is the zero set of two polynomials in Q[absc, orde, x1, x2]. The
evaluation of Envelope(’env’,’loc’,’B’) just carries out the elementary com-
putation for plane envelopes, returning

{’type’: ’Line’,

’hist’: [’Envelope’, ’env’, ’loc’, ’B’],

’parents’: {’loc’, ’B’},

’mover’: ’B’,

’eq’: {absc^2*orde^4 + orde^6 - 16*absc^3*orde^2 - 24*absc*orde^4

- 36*absc^4 + 74*absc^2*orde^2 - 2*orde^4 + 432*absc^3

+ 32*absc*orde^2 - 1647*absc^2 - 207*orde^2 + 1656*absc + 1296},

’tracer’: ’loc’}

Since the library provides the equation of the envelope, plotting it in a DG
environment would be a simple matter. Figure 4 shows a plot of this equation.
Nevertheless, special care must be taken here. Factoring the polynomial we get
the shown parabolas, −orde2 + 18 ∗ absc + 9 = 0 and orde2 + 2 ∗ absc − 9 = 0,
plus an extraneous factor −absc2 − orde2 + 8 ∗ absc − 16, that is, the focus A.
The problem of such extraneous factors deserves special consideration and its
relation with the application of this library to DG environments will be discussed
in a future note.



Fig. 4. A Sage plot of the moving ellipse envelope.

3.3 Macro Definitions

Even with the small set of library basic functions listed in 3.1, new curves can be
easily derived following an approach that resembles the well known mechanism
of macros or tools in standard DG environments. Consider computing the pedal
curve of a line with respect to a given point. The following function solves the
problem:

def Pedal(n,l,p):

"""Computes the pedal line $n$ of line $l$ with respect to

point $p$."""

TangentLine(’tan’,l,’ptemp’)

PerpendicularLine(’perp’,p,’tan’)

IntersectionObjectObject(’x’,’tan’,’perp’)

Locus(n,’x’,’ptemp’)

If the line l is the ellipse with foci in (0, 0) and (4, 0), and passing through
(9/2, 1/2) (so having as equation 36x2 + 100y2 − 144x− 81 = 0), its pedal curve
with respect to the point (2, 0), computed with the above function, is the quartic
4x4 + 8x2y2 + 4y4 − 32x3 − 32xy2 + 71x2 + 23y2 − 28x− 36 = 0.

The above protocol would be natural in any DG system, assuming the sys-
tem can compute tangent lines. If using GeoGebra, the procedure can be easily
defined as a tool, since all involved operations are defined. We propose enhancing



the definition of tools with our library. It must be noted that this connection
will require fine tuning. For instance, GeoGebra (and many other DG systems)
deal with straight lines, conics and greater degree curves as essentially different
objects, while they are just Line objects in the library. Defining a parent class
for 1–dimensional objects would solve this point.

Another illustration of this technique is the computation of catacaustics, the
reflective case of caustics. These caustics envelope a family of reflected rays, so,
given a fixed point p and a line l, the procedure

def Caustic(n,l,p):

"""Computes the catacaustic $n$ of line $l$ with radiant $p$."""

TangentLine(’tan’,l,’ptemp’)

PerpendicularLine(’perp’,’ptemp’,’tan’)

Symmetrical(’q’,p,’perp’)

Line(’ref_ray’,’q’,’ptemp’)

Envelope(n,’ref_ray’,’ptemp’)

returns the caustic.

3.4 Using the Library: Caveat Emptor!

Some considerations must be made about using the library. The first one is
an advice for non expert users when mimicking the macro approach described
above. Both procedures use some intermediate objects that share their names
(tan, perp, ptemp,...) and, since accessing elements is done by name, a previously
constructed element could be used. Multiple constraining is allowed for some ele-
ments (BoundedPoint, for example). So, a careless user can introduce undesired
constraints for construction elements. The library code contains two alternative
definitions for computing pedals and caustics, with appropriate names for inter-
mediate objects and where the dictionary values of the final curves contain more
specific information about them.

The second consideration involves the relation between varieties and ideals,
so allowing a correspondence between geometry and algebra. The problem of ex-
traneous factors, illustrated in Section 3.2, can be seen as one of an algorithmic
nature. It is planned that new library versions will add alternative algorithms
(different types of resultants) and heuristic strategies for dealing with it. Nev-
ertheless, there is another source or imprecision, coming from the elimination
approach taken in the library. Although algebraic elimination has been proved
as succesfull when introducing automated deduction in DG systems, its findings
must be critically examined in this environment. For instance, once computed
the pedal in Section 3.3, one should note that the zero set of the polynomial
wrongly includes the pedal point. So, we cannot rely on the pedal object for
a posteriori computations. This behavior can be explained as follows: when we
eliminate variables, we do not get just a projection, but its Zariski closure. That
is, there can exist spurious points. As GDI warns, when finding a locus, “The
locus is (or is contained in)...”. There is an ongoing theoretical work on this
subject. Future versions of the library will incorporate these new developments.



4 Conclusions and Future Work

We report a free open source implementation of a Sage based library for com-
putations related to plane parametric geometric contructions. The library solves
the problem of finding the algebraic description of objects in a virtual ruler and
compass environment. Although it is restricted to a purely algebraic realm and
it does not give a complete solution to the translation between geometry and
algebra (if there is one!), it is an efficient solver for handy computations and can
be easily integrated as an add–on to general dynamic geometry environments.
Future work concerning library development involves automatic theorem proving
and discovery.
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