PPW2.0 Prácticas de matemáticas Pola Web

Francisco Botana

Para R., I., S. e L.

Pygmaeos gigantum humeris impositos, plusquam ipsos gigantes videre. Diego de Estella

 $\acute{\rm E}$ maravilloso arruinar a festa dos poderosos e dos privilexiados.

Noam Chomsky

Hace un millón de años, en la Prehistoria, ellos eran los más fuertes y la fuerza era la ley. Gigantescos, brutales, salvajes, animales. Pero ocurrió, así fue: todos sucumbieron. Ahora son petróleo, necesario en nuestro tiempo. Cuando los dinosaurios dominaban la Tierra era por la fuerza y ahora es de otra manera.

Eskorbuto

A cuestión é quén é o que manda. Eso é todo.

Humpty Dumpty

Prefacio

Este folleto, e o medio dixital que o acompaña, ten esencialmente dous obxectivos. Un deles é proporcionar unha colección de páxinas web interactivas para o estudio dalgúns obxectos matemáticos usualmente atopados nas ensinanzas científicas é técnicas de Grao. Estas páxinas son un complemento para a docencia e, ó mesmo tempo, sirven para o estudio individual da alumna, liberándoa de cálculos repetitivos ou tediosos e poñéndoa en contacto con Sage, un poderoso software matemático libre e gratuito. O segundo obxectivo é compartir coa comunidade un sistema operativo tamén libre e gratuito, nunha distribución pensada para incitar ó usuario ó cambio de paradigma. Se ás tradicionais misións da Universidade, docencia e investigación, engadíuse recentemente á de transferencia de tecnoloxía, este traballo abrangue docencia e transferencia. Pensamos que é tarefa fundamental de calquera profesor contribuir á formación de cidadáns socialmente responsables. A migración a sistemas abertos e o ensino neles é polo tanto unha obriga de calquera servidor público na Universidade.

O manual contén un primeiro capítulo que fai unha breve descripción do sistema Sage. Este capítulo, de escrita coleitiva, é un artigo feito fai xa algún tempo para profesores de Matemáticas. Pensamos que neste contexto pode botar luz sobre o software proposto. Os restantes capítulos correspóndense cas follas que se poden atopar no medio dixital acompañante. A súa estructura é sinxela: cada un iníciase cunha imaxe idéntica á que a usuaria ten cando executa en Sage a folla de traballo de igual número. Fanse despóis algunhas consideracións sobre o uso da folla e propóñense exercicios, comentados cando se estimou convinte, relativos ó concepto a estudiar.

O software que acompaña o folleto chámase **PPW2.0** e preséntase baixo a forma dun DVD ou, nunha edición especial, dun pendrive. A razón do nome é unha lembranza ó noso anterior manual, *PPW Prácticas de matemáticas pola Web*, é a constatación da nosa evolución sobre a metodoloxía do ensino e aprendizaxe das matemáticas. A presentación baixo a forma de DVD explícase polo menor custe de edición. Moitos dos materiais utilizados proveñen do dominio público ou están acollidos a Creative Commons, que tamén cubre este material. Non é intención nosa tirar beneficio económico deste esforzo.

Para arrancar o sistema nunha computadora ordinaria, basta modificar a secuencia de arranque de xeito que o primeiro dispositivo leído sexa a unidade de CD (ou USB, no caso do pendrive). Tras uns segundos a pantalla amosará dúas liñas de texto, decindo a segunda **boot**:. Premendo a tecla Enter pasamos a outra pantalla onde a opción por defecto cargará o sistema na computadora e xa podemos empezar a usar **PPW2.0**. As velocidades de carga e de execución de **PPW2.0** dependen de moitas variables. Suxerimos a instalación do sistema no disco duro para unha execución máis áxil. Procuramos limitar ó máximo o

número de contrasinais, sendo ppw20 o valor canónico para o nome de usuario ou contrasinal.

Nas carpetas Documentos e Vídeos do directorio persoal pódense atopar distintos documentos para facer máis sinxela a transición á libertade aquí ofrecida. En Vídeos hai clips que ilustran cómo conectarse á rede, como lanzar Sage, ... Un vídeo de visionado recomendado e o de Richard Stallmann. En Documentos hai unha extensa biblioteca multilíngüe (castelán, inglés, francés) de recursos relativos a Sage, sendo a referencia canónica *Sage Tutorial*. Actualizacións, fe de erratas, etc. pódense atopar en http://webs.uvigo.es/fbotana/ppw20.

Somos debedores de moita xente, nesta obra especialmente de William Stein e o equipo de desenvolvemento de Sage. As eventuais bondades deste traballo débense ao esforzo da comunidade, os erros, por suposto, son responsabilidade do autor.

Esta obra está licenciada baixo Creative Commons Reconocimiento-Compartir Igual 3.0 España (CC BY-SA 3.0).

F. Botana

Índice

Prefacio	III
0. Sage: Una aplicación libre para matemáticas	1
1. Representación de funcións $y = f(x)$	13
2. Representación simultánea de funcións $y = f(x), y = g(x), \dots$	15
3. Representación de funcións a trozos	17
4. Límite de funcións dunha variable	19
5. Derivada dunha función $f(x)$	21
6. Desenvolvemento de $f(x)$ en serie de Taylor	23
7. Primitiva dunha función $f(x)$	25
8. Integral definida dunha función $f(x)$	27
9. Representación de funcións de dúas variables $z = f(x, y)$	29
10. Representación de funcións implícitas $F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0$	33
11. Representación simultánea de funcións de dúas variables $z_1 = f(x,y), z_2 = g(x,y), \ldots$	35
12.Límite de funcións de dúas variables	37
13. Derivadas parciais de funcións reais de varias variables $f(x,y,z,\dots)$	39
14. Desenvolvemento de $f(x,y)$ en serie de Taylor	41
15. Extremos relativos de funcións de dúas ou tres variables	43
16.Extremos condicionados de funcións de dúas ou tres variables cunha ou dúas condicións	45
17.Gradiente, curvas de nivel e campo gradiente de funcións de dúas variables	47

18. Gradiente, superficies equipotenciais e campo gradiente de fun- cións de tres variables	49
19. Plano tanxente a unha superfici e $z=f(\boldsymbol{x},\boldsymbol{y})$ nun punto	51
20. Visualización de recintos planos	55
21.Visualización de recintos 3d	57
22.Integrais dobres	61
23.Integrais triples	63
24. Resolución de ecuacións diferenciais ordinarias	65

Sage: Una aplicación libre para matemáticas

F. Botana^a, J. Escribano^b, M. Á. Abánades^c

 ^a Departamento de Matemática Aplicada I, EUIT Forestal, Universidad de Vigo, Campus A Xunqueira, Pontevedra.
 ^b Departamento de Sistemas Informáticos y Computación, Facultad de Informática, Universidad Complutense de Madrid, Madrid.
 ^c Ingeniería Técnica en Informática de Sistemas, Centro de Estudios Superiores Felipe II, Universidad Complutense de Madrid, Aranjuez, Madrid.

Resumen

Sage es un software que nos permite experimentar con las matemáticas. Gratuito y de código abierto, constituye la apuesta más novedosa para utilizar las TIC en nuestro ámbito. La integración de múltiples herramientas, la posibilidad de acceso remoto por Internet y el énfasis por la decencia y la libertad conforman sus más notables características. Por su potencia y versatilidad auguramos que Sage se convertirá en el estándar de facto para la enseñanza con ordenador en las matemáticas de niveles medio y superior.

Palabras clave

Divulgación, Matemáticas computacionales, Experimentación, Software matemático, Secundaria, bachillerato y universidad.

Abstract

Sage is a computer application that allows direct experimentation with mathematics. Free and open source, it is the newest asset to use ICT in our area. The integration of multiple tools, the possibility of remote access via the Internet and the emphasis for decency and freedom make their most notable features. For its power and versatility we foresee Sage as the *de facto* standard for teaching mathematics with computers in secondary and university levels.

Keywords

Divulgation, Computational Mathematics, Experimentation, Mathematical software, High school and university.

Introducción

En los últimos números de Suma hemos leído con interés y agrado un artículo (Rodríguez 2009) y dos partes de una trilogía (Real 2009-1 y Real 2009-2) sobre un sistema de cálculo simbólico, Maxima (<u>http://maxima.sourceforge.net/</u>). Insistiendo en el empeño queremos contribuir con estas notas a la difusión entre el profesorado de una herramienta nueva probablemente útil para la enseñanza y el aprendizaje de las Matemáticas: *Sage, Software for Algebra and Geometry Experimentation* (<u>http://www.sagemath.org/</u>). Sage, de hecho, incluye Maxima, además de ofrecer otras nuevas potencialidades para su uso en las aulas.

En este artículo esbozamos en la primera sección el origen de Sage y las motivaciones de su desarrollo, así como algunas reflexiones sobre la libertad. La segunda sección trata sobre las computadoras que pueden ejecutarlo e introduce el *notebook* de Sage, una aplicación para ejecutar Sage desde un navegador web. En la tercera sección se ilustran brevemente algunas características del software y se hace un rápido repaso de algunas de sus posibilidades de cómputo en relación con la enseñanza. La cuarta sección explica cómo y dónde descargarlo y usarlo, y proporciona algunos enlaces y referencias para aprender más y para instalar un servidor de Sage propio accesible a través de Internet. Concluimos con una muestra de las posibilidades que nos ofrece Sage, sacando todo el rendimiento al modelo de desarrollo del software libre.

Historia de Sage

El creador de Sage es William Stein (<u>http://wstein.org/</u>), profesor de la Universidad de Washington. Stein tiene una gran experiencia en la utilización de sistemas de álgebra computacional (CAS, por sus siglas inglesas) para el estudio de problemas en teoría de números. Después de trabajar con diversos sistemas, utilizó ayudó а desarrollar el sistema Magma y (http://magma.maths.usyd.edu.au/magma/), un CAS comercial muy especializado desarrollado en Australia. Su amplio conocimiento de Magma le permitió ver las dificultades que entraña el modelo de software comercial en general, y del software científico comercial en particular. A pesar de descubrir y documentar fallos en el sistema Magma, los propietarios del sistema no se mostraron muy partidarios de corregirlos. Es más, tampoco se mostraron especialmente comunicativos a la hora de explicar en detalle el funcionamiento de ciertos algoritmos fundamentales. Lo cual, tratándose de software para el tratamiento de las matemáticas, viene a ser como si un matemático nos dijera que un teorema es cierto, pero se negase a darnos la demostración alegando cuestiones de privacidad comercial.

Después de varios encontronazos con los desarrolladores de Magma, en el año 2004 Stein tiene la

loca idea de crear un CAS gratuito de código abierto, un CAS que cualquier estudiante o profesor pudiese utilizar sin restricciones de ningún tipo (incluyendo las económicas) y que fuese científicamente riguroso, en el sentido de que todos los algoritmos y métodos utilizados pudieran ser conocidos y mejorados por cualquiera. En palabras de Stein, la misión de Sage era *"creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab"* (crear una alternativa libre y de código abierto a Magma, Maple, Mathematica y Matlab). David contra Goliat.

La empresa parecía titánica, pero no se partía de cero. Había muchas cosas que hacer, pero algunas ya estaban hechas y se podían utilizar: Maxima, Singular, GNUPlot,...No se trataba de inventar la rueda sino de construir un coche. Pronto la idea empezó a entusiasmar a numerosos especialistas en el área y la loca idea empezó a tomar cuerpo. Curiosamente, una amenaza de los creadores de Magma (ver Stein 2009) impulsó definitivamente el proyecto de modo que en febrero de 2006 aparecía la versión 1.0 de la aplicación. La historia de Sage acaba de empezar...

Algunas otras consideraciones acerca de Sage y del software matemático libre en general pueden encontrarse en Abánades et al. (2009)

Cómo utilizar Sage

Utilizar Sage es bastante sencillo una vez que hemos tenido en cuenta algunos detalles. Para empezar, Sage se puede utilizar de varias formas distintas, siendo la instalación clásica en nuestro propio PC una de ellas. Pero también podemos utilizarlo sencillamente lanzando un LiveCD (disponible en <u>http://www.sagemath.org/download.html</u>) o, mejor aún, sin instalar ni descargar nada, solamente conectándonos a Internet.

La instalación en un PC es sencilla, pero depende fundamentalmente del sistema operativo que utilices. Si usas Mac o GNU/Linux la instalación no puede ser más simple: descárgate el fichero correspondiente (de <u>http://www.sagemath.org/download.html</u>), descomprímelo y ejecútalo. Todo funciona a la primera. Si utilizas un sistema Windows la instalación es algo más laboriosa (ya que Sage, de momento, no tiene una versión nativa para Windows, aunque Microsoft está subvencionándola). Te damos más detalles sobre la instalación bajo Windows un poco más adelante. En todo caso, para instalar Sage en tu PC lo mejor es visitar su página web y seguir los enlaces (un poquito de inglés será de gran ayuda).

Pero suponemos que de momento optarás por la solución más cómoda, que es seguir leyendo sin descargarte nada, y tal vez probar la opción más rápida: usar Sage a través de Internet. Aunque es posible usar cualquier navegador, por razones de seguridad y facilidad de uso te sugerimos el uso de

Firefox (http://www.mozilla.com).

Para un primer contacto con Sage, desde tu navegador puedes visitar alguna de las siguientes direcciones:

http://sagenb.org https://sagenb.kaist.ac.kr:8022/

Te recomendamos utilizar la primera, que es la canónica. La segunda, aunque lejana pues el servidor está físicamente en Corea del Sur, presenta la particularidad de que vive siempre el mismo día: a las 6:00 a.m. todo se pone a cero y ¡vuelta a empezar! Podremos, como Bill Murray en *Atrapado en el tiempo*, hacer lo que queramos sin que nuestros actos tengan consecuencia alguna. Si te decides por esta segunda (o cualquier otro servidor de Sage que use el protocolo seguro https) encontrarás un aviso de seguridad del navegador como el mostrado en la Figura 1.

Figura 1. Advertencia de seguridad cuando accedemos a un servidor seguro Sage.

En este caso, éste es un mensaje estándar y es seguro aceptar la excepción. Para ello haz clic en *Entiendo los riesgos*, después en *Añadir una excepción* y por último en *Confirmar excepción de seguridad*. Deberías entonces ver en tu pantalla la Figura 2. Estás en la página inicial del cuaderno de trabajo de Sage, el *notebook*.

<u>A</u> rchivo <u>E</u> ditar <u>V</u> er Hi <u>s</u> torial <u>M</u> arcadores Herramien <u>t</u> as	Ay <u>u</u> da
A A A A A A A A A A A A A A A A A	😭 🗸 🖓 🖓 Google 🔍
🚱 Sign in 🚽	~
The Sage Notebook: Welcome!	
Sage is a different approach to mathematics software.	Sign into the Sage Notebook v4.2.1
The Sage Notebook With the Sage Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using Sage, Python, and other software included in Sage.	Username: Password: Remember me
General and Advanced Pure and Applied Mathematics Use Sage for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.	Sign In
Use an Open Source Alternative By using Sage you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. Sage includes many high-quality open source math packages.	Browse published Sage worksheets (no login required)
Use Most Mathematics Software from Within Sage Sage makes it easy for you to use most mathematics software together. Sage includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.	
Use a Mainstream Programming Language You work with Sage using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.	

Figura 2. La pantalla inicial del notebook de Sage.

En la parte derecha de la pantalla puedes ver dos enlaces (en azul): el de abajo ofrece la posibilidad de curiosear por las hojas de trabajo, *worksheets*, de otros usuarios, sin necesidad de registrarse. Es interesante hacerlo, pero ten en cuenta que la mayoría de las hojas están en inglés y son documentos sin pulir; además, no podrás ejecutarlos (aunque sí copiarlos una vez tengamos nuestra propia cuenta). Con el enlace de arriba, en cambio, puedes hacerte con una cuenta en ese servidor (¡no, no es necesario enviar ningún SMS!). Hazlo, y empezaremos a usar el notebook. Puede que tengas algún problema con la velocidad de la red. Los servidores de sagenb.org están físicamente en el estado de Washington (EE.UU.) y, aunque están mejorando continuamente, todavía no tienen la potencia de los servidores de Google.

Una vez dentro del sistema encontrarás una pantalla como la que muestra la Figura 3. En ella, haz clic en *New Worksheet* y renombra la hoja si el sistema te lo pide.

Archivo Editar Ver Historial Marcadores Herra	amien <u>t</u> as Ay <u>u</u> da		
🔶 🧼 👻 🥑 🔕 🏫 🔯 http://sagenb.org/t	nome/suma/	☆ ✔ 😵	🗸 Google 🔍
🛐 Active Worksheets 🗱 🔯 Active Works	heets 🗱 🐈		~
Version 4.2.1	suma	Home Published Log He	lp <u>Settings</u> <u>Sign out</u>
New Worksheet Upload			Search Worksheets
Archive Delete Stop Curre	ent Folder: <u>Active</u> <u>Archiv</u>	red Trash	
Active Worksheets	Owner / Collaborators	Last	Edited
Welcome to Sage! You can <u>create a ne</u>	<u>w worksheet, view publisl</u>	ned worksheets, or read the	documentation.

Figura 3. El notebook al entrar por primera vez como usuario/a con cuenta.

Ya puedes empezar a hacer cálculos: haz clic en la celdilla y escribe algo sencillo, por ejemplo, 2*3.

Si evalúas (clic en *evaluate* o *shift+Enter* o, en algún Mac, *shift+Return*) obtendrás lo esperado, tal como muestra la Figura 4.

Figura 4. Celdillas de trabajo del notebook de Sage

Si has escogido instalar Sage o probar con el LiveCD, sigue las instrucciones de instalación y ejecuta la aplicación. Encontrarás una pantalla de texto que más o menos dice

```
| Sage Version 4.2, Release Date: 2009-10-24 |
| Type notebook() for the GUI, and license() for information. |
sage:
```

Teclea notebook(), luego *Enter* y se lanzará el navegador con una página local como la mostrada en la Figura 3. A partir de ahí se procede igual que en el acceso web.

Trabajando en el notebook de Sage

En la sección anterior ya has hecho tu primer cálculo. Aquí insistimos con otros ejemplos para que te hagas una idea de cómo funciona el notebook. Mostramos lo que has de escribir alineado a la izquierda y la salida en el mismo tipo de letra indentada a la derecha. Por ejemplo el cálculo anterior será

2*3

6

Hay dos comandos clásicos al demostrar las posibilidades de un sistema de cálculo: el primero se refiere a la impresión

print "hola,"; print "mundo!"
 hola,
 mundo!

y el segundo es el factorial. ¡Un momento! ¿Cómo se invoca: !, fact, ...? Si escribimos fac y apretamos *Tab* obtenemos todos los comandos que empiezan por esas letras

y clicando en la segunda queda escrita como entrada. Para decidir si es la adecuada podemos pedir ayuda añadiendo una interrogación después del comando

factorial?

con lo que aparece un cuadro de texto como el parcialmente mostrado en la Figura 5, que resuelve la duda.

Figura 5. Fragmento de la ayuda relativa al comando factorial.

Si añadimos un segundo signo de interrogación obtendremos el código fuente usado en la evaluación del comando, dando así libertad al usuario para comprobar la corrección de los algoritmos usados.

Una de las características más llamativas de los sistemas de cálculo es su capacidad para obtener representaciones gráficas precisas. La sintaxis de Sage en este aspecto es parecida a la de Mathematica. Por ejemplo

```
plot(sin,(-pi,pi))
```

У

```
var('y'); plot(sin(y),(y,-pi,pi))
```

devuelven la gráfica esperada (Figura 6). Nótese que en la última línea hay que declarar explícitamente la variable usada.

Figura 6. Gráfica del seno devuelta por Sage.

En cuanto a representación tridimensional, Sage integra un applet, Jmol, mediante el cual es posible

interactuar desde el notebook con la superficie representada. Por ejemplo, la siguiente orden dibuja un cono de eje z (Figura 7)

```
var('x y z'); implicit_plot3d(x^2+y^2-z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2))
```


Figura 7. El cono $z^2=x^2+y^2$.

El cálculo de límites, derivadas, integrales,... es también el usual en estos sistemas

```
lim((1+1/x)^x, x=oo)
        e
diff(sin(x)*log(x^(1/x)), x)
        -(log(x)/x^2 - 1/x^2)*sin(x) + log(x^(1/x))*cos(x)
integrate(-(log(x)/x^2 - 1/x^2)*sin(x) + log(x^(1/x))*cos(x))
        log(x)*sin(x)/x
maxima.taylor(cos(x), x, 0, 4)
        1-x^2/2+x^4/24
```

Esta última computación (y algunas de las anteriores, si bien de manera no tan explícita) recurre a Maxima: las capacidades de cálculo simbólico en Sage son, en gran parte, deudoras de Maxima.

Esto es un ejemplo concreto de la filosofía de Sage ya mencionada: no reinventa la rueda, construye un coche. Si un software para un determinado campo es libre y es eficiente se incorpora al sistema. Por ejemplo, en <u>https://kimba.mat.ucm.es:9000/home/pub/5/</u> puede verse una hoja de trabajo en Sage que permite calcular la envolvente de un tipo especial de escaleras (las que se deslizan por una pared experimentando, mientras lo hacen, una variación de su longitud). Puesto que los cálculos necesarios para la obtención de la envolvente involucran eliminación de variables en anillos de polinomios se usa un programa específico para ello, Singular (<u>http://www.singular.uni-kl.de/</u>). Aunque teóricamente podría usarse Maxima para ello, nos ha resultado más cómodo utilizar aquel. Otra muestra más de libertad dentro de Sage.

Ha de notarse que esta hoja de trabajo ilustra además otra valiosa aportación del notebook de Sage: la posibilidad de incrustar applets en las hojas de trabajo, como muestra la Figura 8 respecto a GeoGebra (<u>http://www.geogebra.org/</u>).

Escaleras flexibles con GeoGebra y Singular	en Sage
 introducir en el campo Entrada una función y=g(x), construir un punto sobre la curva y=g(x) con la herramienta, seleccionar la curva, el origen y el punto sobre la 	curva.
Puede activarse la traza de la escalera flexible para visualizar la envolvent	te.
<pre>%hide html('<applet archive="http://www.geog
/geogebra.jar" code="geogebra.GeoGebraApplet" height="500" mayscript="" width="850"><param name="showMenut
name=" showalgebrainput"="" value="true"/><param name="showToolBar" value<br=""/>name="filename" value="http://webs.uvigo.es/fbotana/FlexibleLadder.gg name="framePossible" value="false"/></applet>')</pre>	gebra.org/webstart 3ar" value="true"/> <param 2="true"/><param gb"/><param< td=""></param<></param </param
Archivo Edita Vista Opciones Herramientas Ayuda	
	(*) (*)
☐ Objetos Libres □ @ B = (0, 0) ☐ Objetos Dependientes	2 - Drag Al

Figura 8. GeoGebra dentro del notebook de Sage

No es el objetivo de este artículo ser un manual de Sage, sino simplemente dar noticia de su existencia y utilidad. Quien lea esto sabrá sin duda por propia experiencia que cuando realmente se aprende es cuando se hace. Como verdaderos documentos de referencia se pueden citar varios, todos descargables del sitio sagemath.org. El manual de Sage (The Sage Development Team 2010), nos familiarizará con el sistema en pocas horas. Si buscamos escritos en castellano, sugerimos Tábara (2009) para ver las posibilidades matemáticas de Sage y una traducción castellana (Yanajara 2008) de un manual para principiantes (Kosan 2007).

La instalación en un sistema MS-Windows

Aunque la manera más cómoda de acercarse a Sage es a través de Internet, donde además se tiene acceso a las hojas de trabajo de otros usuarios y podemos compartir el trabajo con nuestros colaboradores, en muchas situaciones es conveniente tener instalado Sage en nuestro PC.

Como ya hemos indicado, la instalación de Sage en un Mac o PC bajo GNU/Linux consiste básicamente en descargar el fichero adecuado. La instalación de Sage en un entorno Windows no es mucho más dificultosa, pero, al no existir una distribución nativa para Windows, nos obliga a proceder con algo de cuidado.

En primer lugar, tenemos que bajar el fichero de instalación de Sage para Windows, que se

encuentra en <u>http://www.sagemath.org/download-windows.html</u> . Podemos bajarlo de cualquiera de los servidores secundarios (*mirrors*) disponibles, por ejemplo, de RedIris:

http://sunsite.rediris.es/mirror/sagemath/win/sage-virtualbox-4.3.zip.

Es un fichero grande (1 GB), con lo que incluso con las mejores conexiones su descarga va a llevarnos cerca de una hora. A continuación, descomprimimos este fichero .zip.

Antes de seguir con la instalación, tenemos que instalar una aplicación auxiliar. Se trata de un programa gratuito de código abierto, VirtualBox, en la versión de nuestro sistema operativo. Grosso modo, este programa nos va a permitir simular un entorno GNU/Linux en nuestro PC de modo que podamos usar Sage sin cambiar de sistema operativo. Lo encontraremos en http://www.virtualbox.org/. Es ilustrativo el hecho de que para instalar VirtualBox tengamos que hacer frente a nada menos que seis amenazas, aceptando el riesgo que, según Windows, supone la instalación de una aplicación no reconocida por Microsoft, aunque tenga las garantías de Sun Microsystems, empresa pionera y líder en el sector de la computación. Este riesgo es, por otra parte, inexistente

Una vez instalado VirtualBox, desde el menú *Archivo*, elegimos *Importar servicio virtualizado* y seleccionamos el fichero *sage.ovf* de la carpeta *sage-virtualbox-4.3* que está dentro de la carpeta que se generó al descomprimir el archivo *sage-virtualbox-4.3.zip*. Tanto el proceso de instalación de VirtualBox como la importación de Sage desde VirtualBox puede tardar varios minutos.

Una vez instalado Sage, desde la ventana de VirtualBox, iniciamos la máquina virtual Sage, abrimos nuestro navegador con la dirección que nos indica la máquina virtual...y ¡ya está funcionando nuestro notebook!

Nuestra versión de Sage, a pesar de está instalación algo más laboriosa, es plenamente operativa. Todas las hojas de trabajo se guardan en la máquina virtual. Podemos descargarlas todas juntas a un fichero comprimido de nombre *download_worksheets.zip*. Para ello, basta hacer clic en el enlace *Download All Active* en la lista de las hojas activas. Este fichero contiene todas nuestras hojas de trabajo, y se guarda en el directorio de descargas por defecto de nuestro ordenador. Estas hojas se pueden utilizar en cualquier otro ordenador donde tengamos instalado Sage, o en un servidor Sage, subiendo el fichero con el comando *upload*.

Posibilidades de desarrollo

El modelo propio de desarrollo de software libre que se aplica en Sage, en el que grupos de

matemáticos y programadores colaboran juntos para mejorar constantemente el sistema, permite que nuevas funcionalidades e ideas de utilización surjan cada día. A este respecto, la regular visita a los grupos de Google relativos a Sage es recomendable para quienes tengan interés en mantenerse informados (en inglés) de las novedades en este sistema. Para encontrarlos basta teclear *sage google* y alguna de las palabras *edu, notebook* o *support* en cualquier buscador.

Como hemos visto, Sage se puede utilizar vía web siendo posible compartir hojas de trabajo con otros usuarios. Esto abre ilimitadas posibilidades de aplicación en el ámbito docente: clases guiadas en laboratorio, tareas a realizar en casa, trabajos en grupo...Sin embargo, el uso habitual de servidores Sage ajenos puede suponer una limitación técnica. Por ello, de cara a un uso en un contexto amplio, como el de un instituto o una universidad, lo más conveniente es instalar un servidor Sage propio.

Montar un servidor Sage propio, si bien no es una tarea demasiado complicada, sí requiere algunos conocimientos de GNU/Linux y del funcionamiento de un servidor web. Las instrucciones que da Dan Drake en <u>http://wiki.sagemath.org/DanDrake/JustEnoughSageServer</u> garantizan razonables posibilidades de éxito: basta VirtualBox y una distribución de GNU/Linux sencilla (Jeos) para crear nuestro propio servidor web.

Probablemente haya en tu centro algún ordenador al que los virus de Windows y la obsolescencia planificada de nuestra sociedad de consumo hayan arrinconado: ¡Ese es el equipo perfecto para instalarle Ubuntu y crear la máquina virtual que permita ejecutar Sage remotamente!

Otra posibilidad de uso de Sage algo más complicada es ejecutar directamente cálculos en Sage a través del protocolo http sin utilizar necesariamente un navegador web. Esto nos permite, de modo transparente para el usuario, acceder a la potencia de Sage sin necesidad de entrar en una cuenta. Aunque esta característica exige ciertos conocimientos de programación, pensamos que abre vías para la elaboración y uso de nuevos materiales educativos que antes estaban condicionadas por el uso de aplicaciones comerciales caras. La información relativa a esta posibilidad puede encontrarse en http://sagemath.org/doc/reference/sagenb/simple/twist.html.

Referencias bibliográficas

 Abánades, M. A., Botana, F., Escribano J. y Tabera, L. F. (2009). Software matemático libre. La Gaceta de la Real Sociedad Matemática Española 12 (2) 325-346.
 <u>http://itis.cesfelipesegundo.com/secciones/WebPersonal/archivos/1/OpenSourceMath-Gaceta-baja-res.pdf</u> • Yanajara. H. (2008). Manual de Sage para principiantes.

http://sagemath.org/es/Manual_SAGE_principiantes.pdf

• Kosan T. (2007). Sage for Newbies.

http://sage.math.washington.edu/home/tkosan/newbies_book/

- Real, M. (2009). La potencia de las TIC para el cálculo simbólico. Suma, nº 61, 55-61.
- Real, M. (2009). El cálculo simbólico de forma gráfica. Suma, nº 62, 57-62.
- Rodríguez, M. (2009). Maxima, un sistema libre de cálculo simbólico y numérico. *Suma*, nº 60, 7-20.
- Stein, W. (2009). Mathematical Software and Me: a very personal recollection.

http://modular.math.washington.edu/mathsoftbio/history.pdf

• Tábara, J. L. (2009). *Matemáticas elementales con Sage*. http://sagemath.org/es/Introduccion a SAGE.pdf

• The Sage Development Team (2010). *Sage Tutorial. Release 4.3.1*. <u>http://sagemath.org/doc-pdf/en/SageTutorial.pdf</u>

Representación de funcións y = f(x)

A folla de traballo representa funcións explícitas dunha variable y = f(x) nun dominio especificado polo usuario.

Restriccións de uso

- Devólvese unha gráfica baleira se a función non está definida no dominio indicado (por exemplo, a función logarítmica en [-2, 0]) ou erro se a función non é coñecida polo sistema (ctan(x) en lugar de cot(x), por exemplo).
- A variable independente é x.

• A expresión f(x) é simplificada antes da representación polo que poden non ser detectadas algunhas discontinuidades.

Exercicios

- 1. Representa as funcións trigonométricas, as inversas, as hiperbólicas e as inversas (sin, cos, tan, cot, sec, csc para as circulares, rematadas con h para as hiperbólicas e precedidas de arc para as respectivas inversas. Lembra que o tabulador autocompleta comandos).
- 2. Representa a función $y = \sin(x)$ en
 - a) [-2000, 2000]
 - b) [-2,2]
 - c) [-.2, .2]
 - d) [-.0002, .0002]
- 3. Representa $y = \log(x)$ en (-2, 0). Observa que a gráfica devolta é vacía. Non se devolve erro pero sí un aviso, posto que a función non é real no dominio indicado. O aviso será similar ao seguinte:

```
verbose 0 (3989: plot.py, generate_plot_points) WARNING: When plotting,
failed to evaluate function at 100 points.
verbose 0 (3989: plot.py, generate_plot_points) Last error message: ''
```

4. Fai clik co botón esquerdo do rato enriba de **%hide**. Observa o sinxelo código da folla de traballo e tenta comprendelo. Fai os cambios necesarios para que a variable independente sexa y, de xeito que vexas

%hid	2
	function sin(1/v)
	dominio (-2*pl, 2*pl)
	f(x) = f(x) = cin(1)
	Grafica de $f(y) = \sin\left(\frac{1}{y}\right)$

- 5. Nunha celdiña valeira do notebook escribe plot?. Lee a documentación e proba algúns dos exemplos mostrados. Aprende a cambear de cor as gráficas, aumentar a definición das imaxes, e pór lendas ás gráficas.
- 6. Representa a función sgn. Descríbea.
- 7. Busca se hai unha función Sage que coincida ca que coñeces como *parte* enteira e represéntaa.
- 8. Lee a documentación da función ceil, represéntaa e descríbea.
- 9. Representa as funcións
 - a) x floor(x)
 - b) floor(x/2)
 - c) $\operatorname{ceil}(x) \operatorname{floor}(x)$
 - d) floor($\log(x)$)

Representación simultánea de funcións

Representación simultánea de funcións $y = f(x), y = g(x), \dots$

A folla de traballo representa simultáneamente varias funcións explícitas dunha variable $y = f(x), y = g(x), \ldots$ nun dominio especificado polo usuario.

Restriccións de uso

- Se algunha función non ten valores reais no dominio indicado a sua gráfica devólvese baleira. Obtense erro se algunha función non é coñecida polo sistema, ou un aviso se o sistema non pode avaliar a función en todo o dominio.
- A variable común independente é x.
- A expresión de cada función é simplificada antes da representación polo que poden non ser detectadas algunhas discontinuidades.

Exercicios

- 1. Representa sin(x) e cos(x). Identifica cada unha de elas.
- 2. Representa $\exp(x) \in \log(x)$. Identifica cada unha de elas.
- Escribe [x*log(x),log(x)+1] no campo funcion e (0,2) como dominio. Asocia gráficas e funcións.
- 4. No exercicio anterior a función log(x) + 1 é a derivada da función x * log(x). Teríanse obtido as mesmas gráficas escribindo no primeiro campo [-x*log(x),diff(x*log(x),x)] pois diff(f,v) devolve a derivada de f respecto de v. Na seguinte imaxe amósanse as gráficas dunha función e da sua derivada. Identifica cal é a función e cal a derivada.

- 5. Identifica cas gráficas a función e a derivada nos seguintes pares, cos dominios indicados:
 - a) $\tan(x), \sec(x)^2, (-.5, .5)$
 - b) $\cosh(x), \sinh(x) + 1, (-.5, .5)$
 - c) $x\sin(x), \sin(x) x\cos(x), (0,2)$
 - d) $1/x, \log(x), (0, 10)$
- 6. ¿Cantas funcións pensas que se poden representar simultáneamente? Examina o código da folla de traballo para cerciorarte.
- 7. No código busca random(). Averigua (random?) qué é esta función.

Representación de funcións a trozos

Representación de funcións a trozos

A folla de traballo representa funcións dunha variable definidas a trozos. A función defínese mediante unha lista de pares, onde cada par está composto dun intervalo e dunha expresión funcional de Sage.

Restriccións de uso

- Devólvese unha gráfica parcial baleira e un aviso se a función non está definida nalgún trozo ou erro se a función non é coñecida polo sistema.
- É recomendable usar unha mesma variable funcional en tódolos trozos.
- As expresións funcionais en cada trozo son simplificadas antes da representación polo que poden non ser detectadas algunhas discontinuidades.

Exercicios

1. Comproba que cos trozos

[[(-3, -2), y], [(0, 1/2*pi), -x + 1], [(1/2*pi, pi), x^2]]

obtense a misma resposta que na escrita por defecto na folla. Sen embargo, Sage devolve erro se a función do segundo trozo é-x+y+1 porque non pode decidir cal é a variable da función.

2. Representa as funcións

a)
$$f(x) = \begin{cases} 2x - 4 & si \quad x < 0\\ 4x + 2 & si \quad x > 0 \end{cases}$$

b)
$$f(x) = \begin{cases} 2 & si \quad x \le 1\\ x & si \quad 1 < x \le 3\\ 6 - x & si \quad 3 < x \le 6\\ 0 & si \quad x > 6 \end{cases}$$

3. Atopa a expresión analítica da función cuxa gráfica é

Límite de funcións dunha variable

Límite dunha función f(x) cando $x \rightarrow a$, $lim_{x\rightarrow a}f(x)$

A folla de traballo calcula límites de funcións reais dunha variable real.

Restriccións de uso

- A variable independente é x. Se hai outras variables na función asúmense constantes.
- Para calcular límites no infinito, este escríbese con dous os, ∞o. Se o límite é infinito, Sage pode devolver ∞, +∞ ou -∞, onde hai que entender o primeiro como unha magnitude infinita sen signo.

Exercicios

- 1. No exemplo por defecto o límite devolto é ∞ . Tendo en conta a observación anterior non hai contradicción co límite devolto $(+\infty)$ cando se preme o botón pola esquerda. Calcula lím_{$x\to0$} $\frac{1}{x}$, lím_{$x\to0^+$} $\frac{1}{x}$ e lím_{$x\to0^-$} $\frac{1}{x}$
- 2. Calcula os seguintes límites:
 - a) $\lim_{x \to 0} (x+1)^{(1/x)}$

- $b) \lim_{x \to \infty} (1+1/x)^x$ $c) \lim_{x \to \infty} \frac{e^x}{x}$ $d) \lim_{x \to -\infty} \frac{e^x}{x}$ $e) \lim_{x \to 0} \frac{x^2 (my)^2}{x^2 + (my)^2}$
- 3. Calcula o límite da función parte enteira de \boldsymbol{x} en
 - a) un número racional non enteiro
 - $b)\,$ calqueira número enteiro
- 4. Calcula $\lim_{x\to 0} \sin \frac{1}{x}$
- 5. Busca na documentación de limit o significado e as diferencias entre und e ind.

Derivada dunha función f(x)

Derivada dunha función f(x)

Shide funcion $x^{2/(2^{*}x^{2}+3)^{2}}$ **A derivada de** $f(x) = \frac{x^{2}}{(2x^{2}+3)^{2}}$ $-\frac{8x^{3}}{(2x^{2}+3)^{3}} + \frac{2x}{(2x^{2}+3)^{2}}$

A folla de traballo calcula derivadas de expresións simbólicas.

Restriccións de uso

- A variable independente é x. Se hai outras variables na función asúmense constantes.

Exercicios

1. Comproba os resultados dalgunha táboa de derivadas (por exemplo http://es.wikipedia.org/wiki/Derivada#Lista_de_derivadas_de_funciones_elementales).

I want to have access

to my math software via a <u>web-browser</u> from anywhere

at anytime.

www.sagemath.org

Desenvolvemento de f(x) en serie de Taylor

A folla de traballo calcula o polinomio aproximador de Taylor da función e orde dadas no punto indicado.

Restriccións de uso

• A variable independente é x. Se hai outras variables na función asúmense constantes.

Exercicios

- 1. Aproxima a función $\log(1 + x)$ mediante un polinomio de grao 6 nun contorno da orixe.
- 2. Aproxima a función log(x) mediante un polinomio de grao 4 nun contorno da orixe. Explica o resultado obtido.
- 3. Busca a documentación Sage para o desenvolvemento en serie de Taylor (taylor?).

4. Comproba, usando a folla 5, de representación simultánea de funcións dunha variable, o progresivo axuste dos polinomios aproximadores á función exponencial na orixe.

- 5. Repite a comprobación para
 - a) $\sin(x)$ en 0
 - b) $\cos(x)$ en 1
 - c) $\frac{1}{1+x}$ en 0
- Repite as comprobacións do último exercicio usando a folla de traballo 06b (dispoñible no medio dixital).

Primitiva dunha función f(x)

Primitiva dunha función f(x)

#auto
funcion
$$x^{2}/(2^{x}x^{2}+3)^{2}$$

Unha primitiva de $f(x) = \frac{x^{2}}{(2x^{2}+3)^{2}}$ é
 $\frac{1}{24}\sqrt{6} \arctan\left(\frac{1}{3}\sqrt{6}x\right) - \frac{x}{4(2x^{2}+3)}$

A folla de traballo calcula primitivas de funcións dunha variable.

Restriccións de uso

- A variable independente é x. Se hai outras variables na función asúmense constantes para a integración.
- O resultado pode vir expresado en termos dunha ampla variedade de funcións especiais.

Exercicios

1. Calcula unha primitiva de

a)
$$x^{3}e^{(x^{2})}$$

b) $\log(x^{2} + 1)$
c) $\frac{a \arcsin x}{\sqrt{1 - x^{2}}}$
d) $\frac{x}{x^{4} + 1}$

$$e) \frac{1}{x\sqrt{x^2-1}}$$

- $f) \quad \frac{1}{2\sinh x \cosh x} \\ g) \quad \frac{1}{x^2 \sqrt[3]{(4+x^3)^5}}$
- 2. Comproba que as primitivas dalgunhas funcións non son expresables mediante funcións elementais. Neste caso Sage devolve unha función especial ou a función a integrar.
 - a) e^{-x^2} b) $\frac{\sin x}{x}$ c) $\frac{1}{\log x}$ d) x^x
- 3. Comproba que outras variables distintas de x na función son tratadas como constantes na integración. Acha unha primitiva de
 - a) $x \sin y$ b) x^{a^2}
- 4. Busca a documentación Sage para o cálculo de integrais (integral? ou integrate?).
- 5. Calcula unha primitiva de
 - a) $\sqrt{1-x^2}$
 - b) $\sqrt{a^2 x^2}$
 - c) $\sqrt{a-x^2}$

Observa que no derradeiro caso non se devolve unha primitiva senon un aviso requerindo información suplementaria. Escribe nunha celdiña baleira da folla

integral(sqrt(a-x^2),x)

e verás o mesmo aviso de xeito condensado

integral(sqrt(a-x^2),x) obterás a primitiva buscada.

6. Para que Sage olvide a asunción feita sobre *a* avalia forget(a>0). Comproba o uso de distintos algoritmos de integración avaliando

integral(x^a, x, algorithm='sympy')
e

integral(x^a, x, algorithm='maxima')

7. Busca na internet páxinas que calculen primitivas.

Integral definida dunha función f(x)

Integral definida dunha función f(x)

A folla de traballo calcula a integral definida de funcións dunha variable.

Restriccións de uso

• A variable independente é x.

Exercicios

- 1. Calcula a área pechada polo eixe x no intervalo $[0, \pi/2]$ e as curvas $y = \cos x$ e $y = \sin x$. Representa previamente as funcións no dominio indicado usando a folla para a representación simultánea de funcións dunha variable.
- 2. Representa e calcula a área limitada polas curvas $x-y-1 = 0 e y^2+x-3 = 0$. Para a representación da segunda función hai que resolvela respecto de y ou proceder como sigue.

Avalía nunha celdiña baleira da folla o seguinte código c1=implicit_plot(x-y-1,(x,-2,4),(y,-3,3),aspect_ratio=1) c2=implicit_plot(y^2+x-3,(x,-2,4),(y,-3,3),aspect_ratio=1) show(c1+c2)

Obterás a seguinte gráfica

- 3. Aínda que $\int \frac{\sin x}{x} dx$ non é expresable mediante funcións elementais a folla calcula aproximacións numéricas. Calcula $\int_{-1}^{1} \frac{\sin x}{x} dx$.
- 4. Acha a área comprendida entre a curva $y^2 = \frac{x^2}{1-x^2}$ e as súas asíntotas.
- 5. Acha aproximadamente a lonxitude da elipse de semieixes 3 e 2. E se os semieixes son $a \in b$ (para calcular un cuarto da lonxitude pedida avalía nunha celdiña baleira o comando integral(b*sqrt(1-x^2/a^2),x,0,a). Terás que facer unha asunción sobre a).
- 6. Calcula a lonxitude do arco da curva $y = \log \frac{e^x 1}{e + 1}$ entre x = 2 e x = 4.
Representación de funcións de dúas variables z = f(x, y)

Representación interactiva de funcións de dúas variables z = f(x, y)

A folla de traballo amosa unha representación interactiva da gráfica dunha función de dúas variables.

Restriccións de uso

• As variables independentes son $x \in y$.

Exercicios

1. Representa $\sin(xy)$ (se non se indica o dominio, a usuaria escollerá o máis adecuado).

- 2. Representa $(x^2+y^2)\ast e^(-x^2-y^2)$ en
 - a) $[-2,2] \times [-2,2]$
 - b) $[-20, 20] \times [-20, 20]$
- 3. Representa $\frac{1}{xy}$ en $[-1,1] \times [-1,1]$. ¿Existen puntos para os que a función non é real? De existir, ¿afectan á representación gráfica? Representa $\frac{1}{xy}$ en $[0.001,1] \times [0.001,1]$.
- 4. As superficies da folla represéntanse grazas ó applet Jmol, que aínda que definido como un visor Java de código aberto para estructuras químicas en tres dimensións pode ser usado para visualizar superficies. O sitio web canónico de Jmol é http://jmol.sourceforge.net/. Fai clic enriba dunha superficie e experimenta variando os parámetros. Fai xirar a superficie, varía as velocidades de xiro, amosa os eixes, ... Busca as opcións de Estereografía: ¿a qué se refiren?
- 5. Cambia o código da folla de traballo para que acepte funcións de argumentos u e v.
- 6. Representa $z^2 = x^2 + y^2$ (cono circular de eixe z). Despexa z e representa dúas funcións. Lee a axuda relativa a plot3d para representar varias superficies simultáneamente.
- 7. Busca cómo variar o color e a transparencia das superficies.
- 8. Aínda que Jmol é usado por defecto, pódese utilizar outra representación para as superficies. Executa nunha celdiña baleira

P=plot3d(x²+y²,(x,-2,2),(y,-2,2))

show(P,viewer='jmol')

show(P,viewer='tachyon')

e verás dúas representacións dun paraboloide. A segunda usa Tachyon,

http://jedi.ks.uiuc.edu/~johns/raytracer/, unha implementación en código libre dun sistema de trazado de raios (*raytracing*). A seguinte figura está feita en Sage mediante Tachyon.

Representación de funcións implícitas F(x, y, z) = 0

Representación interactiva de funcións implícitas F(x, y, z) = 0

A folla de traballo amosa unha representación interactiva da gráfica dunha función implícita con tres variables.

Restriccións de uso

• As variables independentes son $x, y \in z$.

- 1. Representa o elipsoide $x^2 + y^2 + 4z^2 1 = 0$ (se non se indica o dominio, a usuaria escollerá un adecuado).
- 2. Representa o hiperboloide dunha folla $x^2 + y^2 4z^2 1 = 0$.
- 3. Representa o hiperboloide de dúas follas $-x^2 + y^2 z^2 1 = 0$.
- 4. Representa o paraboloide elíptico $z x^2 2y^2 = 0$.
- 5. Representa o paraboloide hiperbólico $z x^2 + 2y^2 = 0$.
- 6. Representa o cono $z^2 x^2 y^2 = 0$.
- 7. Representa o cilindro $x^2 + 2y^2 1 = 0$. Explica porqué se introduces a misma ecuación na folla anterior, obtés non un cilindro senon un paraboloide.
- 8. Se introduciras a función z = 0, ¿qué superficie obterías? Fai o experimento mental e comproba despois se acertaches. ¿Qué terías que escribir na folla anterior para obter a misma superficie?
- 9. Se introduciras a función $x^2 + y^2 + z^2 = 0$, ¿qué obterías? Fai o experimento mental e comproba despois se acertaches. ¿E con $x^2 + y^2 + z^2 = -1$? ¿Trátase da misma situación?
- 10. Cambia o código da folla de traballo para que acepte funcións de argumentos $u, v \in w$.
- 11. Lee a axuda do comando implicit_plot3d.

Representación simultánea de funcións de dúas variables

 $z_1 = f(x, y), z_2 = g(x, y), \dots$

A folla de traballo representa simultáneamente varias funcións explícitas de dúas variables $z_1 = f(x, y), z_2 = g(x, y), \ldots$ nun dominio especificado polo usuario.

Representación simultánea de funcións de dúas variables $z_1 = f(x, y), z_2 = g(x, y), \dots$

Restriccións de uso

• As variables independentes son $x \in y$.

- 1. Representa unha esfera.
- 2. Representa un cono.
- 3. Representa o cilindro circular de eixe *x* e radio 1. Compara a gráfica ca que obtés na folla de representación de funcións implícitas. Explica a diferencia (aspect_ratio) e corrixe o código da folla.
- 4. Representa o cilindro de eixe y e radio 2. ¿Podes representar usando esta folla o cilindro de radio 1 e de eixe z?
- 5. Crea unha folla como as aquí expostas que represente simultáneamente varias funcións implícitas $F(x, y, z) = 0, G(x, y, z) = 0, \ldots$

Límite de funcións de dúas variables

Límite dunha función f(x, y) cando $(x, y) \rightarrow (a, b)$, $\lim_{(x,y)\rightarrow (a,b)} f(x, y)$

#aut	0	
	funcion	(x^2 - y^2)/(x^2 + y^2)
	punto	(0,0)
	iterados	
	traxectorias	
	expresion_da_traxectoria	y=m*x
	polares	

A folla de traballo calcula os límites iterados, segundo traxectorias e mediante coordenadas polares de funcións de dúas variables no punto indicado polo usuario.

Restriccións de uso

- As variables da función son $x \in y$.
- A traxectoria ten que expresarse como unha función explícita (de y ou de x). Esta función admite parámetros.

- 1. Calcular, se existe, o límite das seguintes funcións na orixe
 - $a)~\frac{x^2-y^2}{x^2+y^2}.$ Na seguinte imaxe pode verse a resposta da folla. Nótese que o límite non existe porque
 - 1) os límites iterados existen pero non coinciden, ou
 - 2) o límite segundo a traxectoria x = my depende de m, ou
 - 3) o límite en polares non é nulo

Os límites iterados son $\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = -1$ e $\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = 1$

O límite segundo a traxectoria indicada é $\frac{m^2-1}{m^2+1}$

0 límite en polares é $\lim_{t\to 0} 2\cos(t)^2 - 1 = 2\cos(t)^2 - 1$

- b) $\frac{x-y-xy}{x+y}$. (Probar cas traxectorias y = mx. Existen límites iterados pero non límite ordinario).
- c) $\frac{xy}{x^2+y^2}$. (Probar cas traxectorias $y = x, y = -x, y = x^2$. ¿Son iguais os límites iterados?).
- d) $\frac{xy^2}{x^2+y^4}$. (Aínda que o límite en polares é nulo, ista é unha condición necesaria pero non suficiente para a existencia de límite ordinario. Calcular o límite en polares para $t = \arccos(r)$. Próbese a traxectoria $y = \sqrt{x}$).
- e) $(x + y) \cos \frac{1}{x} \sin \frac{1}{y}$. (Non existen os límites iterados pero o límite ordinario é 0. Nótese tamén que a folla non é capaz de calcular o límite en polares).
- f) Representar as superficies dos dous últimos exercicios.

g)
$$\frac{xy}{\sqrt{x^2+y^2}}$$
. (O límite é 0).

- h) $\frac{2x^2(y+1)+y^2}{2x^2+y^2}$. (O límite é 1).
- i) $\frac{xy+y^2}{x^2+y^2}$. (Calcular os límites iterados. ¿Pode existir límite ordinario?)

Derivadas parciais de funcións reais de varias variables

 $f(x, y, z, \dots)$

Derivadas parciais dunha función real f(x, y, z, ...)

```
f = \frac{e^{-(x^2-1)^3} e^{\sin(y^2)}}{(x^2,y)^2}

A derivada da función e^{(-(x^2-1)^3)} \sin(y^2) respecto da(s) variable(s) [x, x, y] é

\partial^3 e^{(-(x^2-1)^3)} \sin(y^2) / \partial xxy =

72(x^2-1)^4 x^2 y e^{(-(x^2-1)^2)} \cos(y^2) - 48(x^2-1) x^2 y e^{(-(x^2-1)^2)} \cos(y^2) - 12(x^2-1)^2 y e^{(-(x^2-1)^2)} \cos(y^2)
```

A folla de traballo calcula derivadas parciais de funcións reais de calquera número de variables.

Restriccións de uso

- A expresión da función pode ter calquera número de variables, as cais poden ter calquera nome.
- No campo variables escríbense as variables, separadas por comas, respeito das que se quere derivar e na orde desexada.

- 1. Calcula as derivadas parciais primeiras de
 - a) $z = y \sin(xy)$
 - $b) \ z = \sqrt{e^{2x+y-x^2}}$

c)
$$z = \frac{x}{x^2 + y^2}$$

d) $S = a \sin(x - ct)$, con a, c constantes.

- 2. Calcula as derivadas parciais segundas de
 - a) $P = \frac{RT}{V-b} \frac{a}{V^2}$ (ecuación de Van der Waals). b) PV = nRT (lei dos gases perfectos).

Desenvolvemento de f(x, y)en serie de Taylor

Desenvolvemento de f(x, y) en serie de Taylor

#auto funcion $e^{(x+y)}$ orde 3 punto (0,0) **0 desenvolvemento de** $f(x, y) = e^{(x+y)}$ en serie de Taylor de orde 3 no punto (0,0) é $1 + (x+y) + \frac{x^2 + 2yx + y^2}{2} + \frac{x^3 + 3yx^2 + 3y^2x + y^3}{6} + \cdots$

A folla de traballo calcula o polinomio aproximador de Taylor da función de dúas variables f(x, y) de orde dada no punto indicado.

Restriccións de uso

• As variables independentes son $x \in y$. Se hai outras variables na función asúmense constantes.

- 1. Aproxima a función $\sqrt{x^2 + y^2}$ mediante un polinomio en x, y de grao 4 nun contorno de (1, 0).
- 2. Aproxima a función $\sqrt{x^2 + y^2}$ mediante un polinomio en x, y de grao 4 nun contorno da orixe. ¿Porqué se obtén $+\sqrt{x^2 + y^2} + \dots$?
- 3. Aproxima a función $\frac{1}{1+xy}$ nun contorno de (1,0) mediante un polinomio de segundo grao.

- 4. Aproxima a función $\frac{y^2}{x^3}$ nun contorno de (1,-1) mediante un polinomio de segundo grao.
- 5. Aproxima a función $x \sin y + y \sin x$ nun contorno de (0,0) mediante un polinomio de cuarto grao.
- 6. Comproba, usando a folla de representación simultánea de funcións explícitas de dúas variables, o progresivo axuste dos polinomios aproximadores á función exponencial e^{x+y} na orixe. Na seguinte imaxe amósanse a exponencial a as aproximacións de ordes 1 e 2.

Asocia cada gráfica ca función que lle corresponde. Consulta a documentación (taylor?) para evitar ter que escribir os polinomios de Taylor, que poden ser moi longos.

7. Abre a folla de traballo 14b (dispoñible no medio dixital). Estudia que é o que fai. Repite con ela as comprobacións do último exercicio.

Extremos relativos de funcións de dúas ou tres variables

#auto funcion $x^3 - 4^*x^4y + 2^*y^2$ Puntos críticos ($\frac{4}{3}, \frac{4}{3}$) (0,0) Matriz hessiana $\begin{pmatrix} 6x & -4 \\ -4 & 4 \end{pmatrix}$ O punto ($\frac{4}{3}, \frac{4}{3}$) é un mínimo relativo O punto (0,0) é de sela

Extremos relativos de funcións de varias variables

A folla de traballo calcula os puntos críticos, a matriz hessiana e clasifica os puntos críticos da función de dúas ou tres variables dada.

Restriccións de uso

Admite funcións de dúas ou tres variables: x, y e z. Se a función é de dúas variables, estas son x, y. Se de tres, x, y, z.

Exercicios

1. Acha os extremos relativos das seguintes funcións:

a)
$$6xy - x^3 - y^3$$

b) $(x^2 + y^2)e^{x^2 - y^2}$
c) $12x^2 + 12y^2 - x^3y^3 + 5$
d) $x^8 + y^6 - 2x^4 - 3y^2$

- 2. Acha os extremos relativos da función $x^2 + y^4$. ¿En cántos puntos pode existir un extremo? Representa a función $f(x, y) = x^2 + y^4$ e comproba se a orixe é un extremo.
- 3. Determina os extremos relativos da función $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$. Representa a superficie para decidir acerca da orixe.
- 4. Atopa as dimensións dun orto
edro de volumen 64 $\rm cm^3,$ de xeito que a súa superficie se
xa mínima.
- 5. Acha os extremos da función $f(x,y) = \frac{1}{1+x^2y^2}$. Representa a función para axudar na decisión. Pensa sobre a expresión da función.

Extremos condicionados de funcións de dúas ou tres variables cunha ou dúas condicións

Extremos condicionados de funcións de dúas ou tres variables con unha ou dúas condicións

#aut	0	
	funcion condicions	x^2+y^2 [2*x-4*y+5]
	Posibles	extremos:
	$(-\frac{1}{2},1)$	

A folla de traballo calcula os puntos críticos da función auxiliar (a lagranxiana), entre os cais se atopan os puntos extremos.

Restriccións de uso

- Admite funcións de dúas ou tres variables: $x, y \in z$. Se a función é de dúas variables, estas son x, y. Se de tres, x, y, z.
- En xeral, só ten sentido impor dúas condicións para funcións de tres variables.

Exercicios

1. Acha os extremos da función $x^2 + y^2$ sometidos á condición 2x - 4y = -5 e clasifícaos (máximo, mínimo). Representa as superficies $z = x^2 + y^2$ e

z = 2x - 4y + 5 ca folla de representación simultánea de funcións de dúas variables. Decide se as superficies se cortan. Representa os puntos comúns a ambas superficies e, usando cálculo diferencial nunha variable, comproba a corrección do resultado da folla.

- 2. Unha caixa rectangular repousa sobre o plano xy cun vértice na orixe. Acha o volume máximo se o vértice oposto se sitúa no plano 6x+4y+3z = 24.
- 3. Acha o ortoedro de volume máximo que pode ser inscrito
 - a) na esfera $x^2 + y^2 + z^2 = 1$
 - b) no elipsoide $x^2 + y^2 + 2z^2 = 1$
 - c) no elipsoide $2x^2 + y^2 + 3z^2 = 1$.
- 4. Acha os valores máximos e mínimos relativos que alcanza a función $f(x, y) = x^2 4xy + y^2 + 20x + 20y + 10$ cando (x, y) percorre a curva $g(x, y) = x^2 + y^2 + xy 12$.
- 5. Acha as distancias máxima e mínima dun punto xenérico da curva intersección das superficies $x^2 + 2y^+ 3z^2 = 1$ e $2x^2 + 3y^2 + z^2 = 1$.

Gradiente, curvas de nivel e campo gradiente de funcións de dúas variables

funcion	x^2+y^2	
dominio_x	(-2, 2)	
dominio_y	(-2,2)	
num_curvas	3	
0 vector	gradiente nun punto xenérico é (2x,2y)	
2		
1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
×	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	* * * * * * * * * * * * * * * * * *	
_ - + +	+ + + + + + + + + + + + + + + + + + +	
°	+ / / / / / / · · ·	
-1 =		
X		
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

Gradiente, curvas de nivel e campo gradiente de funcións de dúas variables f(x, y)

A folla de traballo calcula o vector gradiente, e amosa curvas de nivel e o campo gradiente dunha función de dúas variables.

Restriccións de uso

• As variables da función son $x \in y$.

- 1. Calcula o vector gradiente da función $f(x,y) = x^2 + y^2$. Debuxa o seu campo gradiente. Usa o slider para variar o número de curvas de nivel. ¿Podes controlar exactamente qué curvas de nivel se dibuxan?
- 2. Accede ó código da folla e sustitúe contours=num_curvas por contours=[1,2,3]. Verás que agora aparecen tres curvas de nivel f(x,y) = 1, 2, 3. Observa as posicións das curvas de nivel e as frechas do campo gradiente. Explícao.
- 3. Acha as curvas de nivel para as funcións

a)
$$5x + 3y$$

b) $\frac{1}{2+\sqrt{x^2+y^2}}$

Gradiente, superficies equipotenciais e campo gradiente de funcións de tres variables

runcion	2*x*y^2 + x*y + z^2
dominio_x	(-2, 2)
dominio_y	(-2,2)
dominio_z	(-2,2)
num_superficies	2
2.0	

Gradiente, superficies equipotenciais e campo gradiente de funcións de tres variables f(x, y, z)

A folla de traballo calcula o vector gradiente, e amosa superficies equipotenciais e o campo gradiente dunha función de tres variables.

Restriccións de uso

• As variables da función son $x, y \in z$.

Exercicios

1. Acha as superficies equipotenciais das funcións

a)
$$3x^2 + 3y^2 + 3z^2$$

b) $\frac{1}{x+y+z}$
c) $\frac{1}{\sqrt{x^2+y^2}} + 5z$

- 2. Cambia no código os valores de opacity e rgbcolor para mellorar a visualización das superficies.
- 3. Explica porqué é imposible obter a seguinte figura nesta folla de traballo. Corrixe no debuxo o necesario para desfacelo erro.

Plano tanxente a unha superficie z = f(x, y) nun punto

to	
funcion	sin(y*v)^2
dominio x	(2.2)
dominio_x	
uommo_y	
punto	(1,0)
0 plar	o tanxente é $z = 0$
1.00	
0.50	2.0
	0.0 0.0

Plano tanxente a unha superficie z = f(x, y) nun punto

A folla de traballo calcula o plano tanxente á función especificada e represénta
o xunto ca superficie. $\ensuremath{\mathsf{C}}$

Restriccións de uso

• As variables da función son $x \in y$.

- 1. Acha a ecuación do plano tanxente ás seguintes superficies nos puntos indicados:
 - a) $f(x,y) = \sin(xy)$ no punto (0,1)
 - b) $f(x,y) = \sin(x+y)$ no punto (0,1)
 - c) $f(x,y) = 3x^2 + 2y^2 11$ no punto (2,1)
 - d) $f(x,y) = \sqrt{x^2 + y^2}$ no punto (1,1)
- 2. Se se tenta achar a ecuación do plano tanxente na orixe á función $f(x,y) = \sqrt{x^2 + y^2}$ a folla devolve erro. Explica a razón.
- 3. A folla pode utilizarse para calcular planos tanxentes de funcións implícitas F(x, y, z) = 0 se pode despexarse o z, como no caso do cono $z^2 = x^2 + y^2$. Pero iso non é sempre posible ou doado. Para calculalo plano tanxente ó cono no punto $(1, 1, -\sqrt{2})$ coa folla hai que introducir a función $-\sqrt{x^2 + y^2}$.
- 4. Acha a ecuación do plano tanxente á superficie $x^2+3y^2-4z^2+3xy-10yz+4x-5z-22=0$ no punto (1,-2,1). Podes despexar z escribindo nunha celdiña baleira solve (x^2+3*y^2-4*z^2+3*x*y-10*y*z+4*x-5*z-22,z). Terás que decidir en cal das novas superficies está o punto dado.
- 5. Modifica a folla de traballo para que acepte superficies definidas implícitamente. Para elo, busca a pestana File... e selecciona a opción Copy worksheet. Renomea a copia con 19impl e fai as modificacións necesarias. Para entrar no texto fora das celdiñas preme o botón Edit e verás como se escribe este texto HTML. A nova folla debe ter o aspecto da seguinte imaxe.

Plano tanxente a unha superficie F(x, y, z) = 0 nun punto

6. Se introduces os seguintes datos funcion x²+y²-1, dominio_x (-2,2), dominio_y (-2,2) e punto (1,0) na folla 19, ¿qué imaxe obtés? (Tenta resolvelo sen facelo na folla). E cal ca folla para superficies implícitas e os datos funcion x²+y²-1, dominio_x (-2,2), dominio_y (-2,2), dominio_z (-2,2) e punto (1,0,0).

The development process of

my math software should be <u>public</u> and peer

<u>reviewed</u>.

www.sagemath.org

Visualización de recintos planos

Visualización de recintos planos

A folla de traballo representa recintos no plano descritos mediante desigualdades en dúas variables. Os recintos están contidos nun rectángulo especificado pola usuaria.

Restriccións de uso

• As variables das desigualdades son $x \in y$.

- 1. Representa o recinto $||x| |y|| \le 1$ contido no rectángulo $[-2, 2] \times [-2, 2]$.
- 2. Representa os seguintes recintos:
 - $a) \ x \ge 1, y \ge 1, x+y \le 1$

- b) $x \le 1, y \le 1, x^2 + y^2 \ge 1$
- c) O cuadrilátero curvílineo limitado polas curvas
 $y^2=4(x+1),y^2=2(x+\frac{1}{2},y^2=6(\frac{3}{2}-x),y^2=4(1-x)$ e situado enriba do eixe de abscisas
- d) $1 \le (x+2y)^2 + 4y^2 \le 4$
- e) $1 < x^2 y^2 < 4, xy < 1, x > 0, y > 0$
- f) O recinto limitado por $x^2 + y^2 = 1, x^2 + y^2 = 2, y = 0, y = 1$
- 3. Representa, nun cuadrado centrado na orixe de lado 20:
 - a) $\sin x \ge \frac{1}{4}$
 - b) Se no recinto anterior, sustitúes $\frac{1}{4}$ por $\frac{1}{2}$, ¿serán as barras máis anchas ou máis estreitas? (Pensa a resposta antes de comprobalo na folla).
 - c) E se sustitúes sin por cos, ¿serán horizontais as barras? (Pensa a resposta antes de comprobalo na folla). ¿Qué hai que cambiar para ter barras horizontais?
 - d) $\sin(x) \ge a, \cos(x) \ge a$ para $a = \frac{1}{4}, \frac{1}{2}$. ¿Para qué valor mínimo de a obténse un recinto baleiro?
 - e) $\sin(x)\sin(y) \ge \frac{1}{4}$
 - f) $\sin(x)\sin(y) \ge \frac{1}{2}$. Observa que niste caso non aparecen cortes. Redefine o cuadrado de debuxo no exercicio anterior para que tampouco aparezan cortes.
 - g) $\sin(x)\sin(y) \ge \frac{1}{4}$, $\cos(x)\cos(y) \ge \frac{1}{4}$
 - h) $\sin(x)\sin(y) \ge \frac{1}{2}, \cos(x)\cos(y) \ge \frac{1}{2}$
 - i) $\sin(x)\tan(y) \ge \frac{1}{4}$
- 4. Executa nunha celdiña baleira da folla o comando

region_plot(sin(x)*tan(y)>=1/2,(x,-10,10),(y,-10,10),

incol='yellow',bordercol='black',borderstyle='dashed',

plot_points=250, aspect_ratio=1). Busca na documentación (region_plot?)
o siñificado dos argumentos do comando.

Visualización de recintos 3d

Visualización de rexións 3D

A folla de traballo representa sólidos no espacio descritos mediante desigualdades en tres variables. Os sólidos están contidos nunha caixa especificada pola usuaria.

Restriccións de uso

• As variables das desigualdades son $x, y \in z$.

 Nesta folla, a diferencia de outras, os campos de entrada pódense actualizar sen avaliación para cada campo. Despois de cambiar os campos prémase o botón Update.

Exercicios

- 1. Intersección dun cono coa esfera unidade. Representa o sólido $x^2+y^2+z^2 \leq 1, 3x^2+3y^2 \leq z^2$ contido no cubo $[-1,1]\times[-1,1]\times[-1,1].$
- 2. Representa os puntos da esfera de radio $\sqrt{8}$ nos que $|xyz| \ge 2$.
- 3. Representa a parte do elipsoide $x^2 + 4y^2 + 9z^2 = 36$ contida no semiespacio $x + 4y + 6z \ge 3$. Terás que redefinir a caixa para que se vexa todo o sólido.
- 4. Representa a parte do paraboloide $z = x^2 + y^2$ comprendida entre os planos z = 1 e z = 4.
- 5. Representa o sólido determinado polos cilindros $x^2 + y^2 = 4 e x^2 + z^2 = 4$.
- 6. No campo **condicions** asúmese que istas forman unha conxunción. Así, no último exercicio represéntase a parte común a ambos cilindros. Se se quere representar o sólido formado por ambos cilindros (é decir, os puntos (x, y, z) tais que $x^2 + y^2 \leq 4$ ou $x^2 + z^2 \leq 4$) o comando é

 $implicit_plot3d(min_symbolic(x^2+y^2-4,x^2+z^2-4),(x,-4,4),$

(y,-4,4),(z,-4,4),smooth=False)

que devolve

A regla é: Se o sólido está definido como unha combinación booleana de desigualdades, enton

- a) reescribir tódalas desigual
dades na forma $F(x,y,z) \leq 0$ (a desigualdade pode ser estricta),
- b) eliminar ≤ 0 das expresións
- c) reemplazar as conxuncións con max_symbolic,
- d) reemplazar as disxuncións con min_symbolic, e
- e) utilizar implicit_plot3d como se ilustra de seguido.

Para representar o sólido formado polos puntos do cilindro $x^2 + y^2 = 4$ ou do cilindro $x^2 + z^2 = 4$ e que estén dentro do cubo $[-3.8, 3.8]^3$ hai que executar

implicit_plot3d(max_symbolic(min_symbolic(x^2+y^2-4,x^2+z^2-4), x-3.8,y-3.8,z-3.8,-x-3.8,-y-3.8,-z-3.8),(x,-4,4), (y,-4,4), (z,-4,4), smooth=False)

Integrais dobres

Integrais dobles $\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) dy dx$

#aut	0	
	funcion y/(x^2 + y^2) dominio_x (0, 1/2) dominio_y (x/2,x)	
	0 valor da integral dobre é $\frac{3}{4} \log(2) - \frac{1}{4} \log(5)$	
	Unha aproximación numérica é 0.117501	

A folla de traballo calcula integrais dobres de funcións f(x, y) no recinto especificado pola usuaria. Intégrase unha grande cantidade de funcións, independentemente do tipo da integral dobre.

Restriccións de uso

• As variables da función son x e y. Calqueira outra variable considérase constante na integración.

- 1. Calcular
 - a) $\int_{1}^{4} \int_{-2}^{3} y^{2} 2x^{2}y + x^{3}dydx$ b) $\int_{-2}^{3} \int_{1}^{4} y^{2} - 2x^{2}y + x^{3}dxdy$
- 2. Representar, usando a folla 20, o recinto de integración do exercicio da imaxe inicial desta folla. A seguinte imaxe amosa unha solución.

- 3. Calcula mediante unha integral dobre o volume da esfera de radio 3.
- 4. Calcula o valor de $V = 8 \int \int_R \sqrt{9 x^2 y^2} dx dy$, sendo R o primeiro cuadrante de $x^2 + y^2 \leq 9$. Comproba que $\int \int_R \sqrt{9 x^2 y^2} dx dy = \int \int_R \sqrt{9 x^2 y^2} dy dx$.
- 5. Calcula $\int \int_R x + y dx dy$ sendo R o recinto definido por $x^2 + y^2 2x \le 0, x^2 + y^2 2y \ge 0, y \ge 0$. Representa previamente o recinto.
- 6. Representa o recinto R definido por $x^2 + y^2 = 1, x^2 + y^2 = 2, y = 0, y = 1$. Acha a súa área utilizando integrais dobres.
- 7. Acha o volume do sólido $S=\{(x,y,z)\in \mathbb{R}^3/x^2+y^2\leq 1, x^2+z^2\leq 1\}$
- 8. Acha o volume do sólido
 - a) delimitado polos cilindros $z = x^2$ e $z = 4 y^2$,
 - b) formado polos puntos interiores ó cilindro $x^2 + y^2 = 2x$ que se atopan sobre o plano z = 0 e baixo o paraboloide $z = x^2 + y^2$.
- 9. A folla tamén calcula integrais dobres cando a función ten constantes. Calcula
 - a) $\int_0^{\frac{1}{2}} \int_{\frac{x}{2}}^x \frac{ay}{x^2+y^2} dy dx$
 - b) $\int_0^{\frac{1}{2}} \int_{\frac{x}{2}}^x \frac{y}{ax^2 + y^2} dy dx$
 - c) $\int_0^{\frac{1}{2}} \int_{\frac{x}{2}}^x \frac{y}{x^2 + ay^2} dy dx$

Integrais triples

Integrais triples $\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x, y, z) dz dy dx$

#aut		
	funcion x^2*sin(z)	
	dominio_x (0,pi)	
	dominio_y (0,x)	
	dominio_z (0,x*y)	
	Update	
	O valor da integral triple é $\frac{1}{4}\pi^4 + \frac{1}{2}\cos\left(\pi^2\right) - \frac{1}{2}$	
	Unha aproximación numérica é 23.4009	

A folla de traballo calcula integrais triples de funcións f(x, y, z) no sólido especificado pola usuaria. Intégrase unha grande cantidade de funcións, independentemente do tipo da integral triple.

Restriccións de uso

- As variables da función son $x, y \in z$. Calqueira outra variable considérase constante na integración.

Exercicios

1. Representar, usando a folla 21, o sólido sobre o que se integra no exemplo da imaxe precedente. Unha solución amósase na seguinte imaxe.

condicions	[x>0,x <pi,y>0,y<x,z>0,z<x*y]< th=""></x*y]<></x,z></pi,y>
dominio_x	(0,4)
dominio_y	(0,4)
dominio_z	(0,10)
Undata	

2. Representar o sólido S limitado polos planos $x=0, x=2\sqrt{\pi}, y=\frac{x}{2}, y=\sqrt{\pi}, z=2$ ez=4.Calcular a integral $\int \int \int_S \sin \frac{y^2}{2} dz dy dx.$

- 3. Calcular $\int_0^1 \int_1^2 \int_3^4 (x^2 + y^2 + z^2) dx dz dy$.
- 4. Representa o sólido limitado polas superficies $y^2 + z = 4, x + z = 4, x = 0$ e z = 0. Calcula o seu volume.
- 5. O cálculo do volume dun sólido dá lugar á integral triple $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_{x^2+y^2}^9 dz dy dx$.
 - a) Representa o sólido.
 - b) Calcula o volume.
 - c) Expresa o volume mediante outra integral triple que teña a orde de integración y,z,x.
Folla 24

Resolución de ecuacións diferenciais ordinarias

Resolución de ecuacións diferenciais ordinarias

#aut	0	
	ecuacion	y+diff(y,x)
	condicion_inicial	[]
	amosar_metodo	
	tentar_especiais	
	Solución	da ecuación
	$ce^{(-x)}$	

A folla de traballo integra ecuacións diferenciais ordinarias ata de segundo orde. Poden especificarse valores iniciais, pedir que se indique o método usado na integración ou resolver algúns tipos especiais de ecuacións (Clairaut, Riccati, ...), esto último co risco de ter que esperar moito tempo.

Restriccións de uso

- As variables son x (independente) e y (dependente. Búscase unha primitiva y = f(x)). Calqueira outra variable considérase constante na integración.
- No campo ecuacion hai que escribir a igualdade mediante ==.
- se hai condicións iniciais, escríbense no campo condicion_inicial. Se a ecuación é de orde 1 a condición será [x0,y(x0)], e se é de orde 2, [x0,y(x0),y'(x0)].

Exercicios

- 1. Resolver as seguintes ecuacións diferenciais (á dereita de cada unha está o valor do campo ecuacion):
 - a) xy' = 2y, x*diff(y,x)==2*y

- b) yy'+x = 0, y*diff(y,x)+x==0 (neste caso tamén se acepta y*diff(y,x)+x)
- c) $2x^3y' = y(y^2 + 3x^2)$, $2*x^3*diff(y,x) = y*(y^2+3*x^2)$
- d) y'' 2y' + y = 0, diff(y,x,2)-2*diff(y,x)+y==0
- e) (x-1)y''-xy'+y=0, (x-1)*diff(y,x,2)-x*diff(y,x)+y (a folla non atopa solución para esta ecuación)
- f) y'' = y, diff(y,x,2)==y

đ te

- q) y'' y = 4 x, diff(y,x,2)-y==4-x
- h) y'' 3y' + 2y = 0, diff(y,x,2)-3*diff(y,x)+2*y==0
- i) $y''-3y'+2y = 2e^{x}(1-x)$, diff(y,x,2)-3*diff(y,x)+2*y==2*e^x(1-x)
- 2. Resolver a ecuación $y = xy' + 1 \log(y')$. A folla, se non se usa a opción tentar_especiais, devolve erro. Ca opción activada identifica a ecuación como de Clairaut e devolve a solución.

ecuacion	$y = x^{*} diff(y,x) + 1 - \log(diff(y,x))$	
condicion_inicial		
amosar_metodo		
tentar_especiais		
Solución	da ecuación	

 $y(x) = cx - \log(c) + 1, \left[-tx + \log(t) + y(x) - 1 = 0, -\frac{tx-1}{t} = 0 \right]$, polo método clairault

- 3. Resolver $y'e^{-x} + y^2 2ye^x = 1 e^{2x}$.
- 4. Resolver y' = 1 + 2xy e calcular a solución particular que pasa por (0, 1).
- 5. Calcular a solución particular da ecuación do exercicio 1.d) con $x_0 =$ $2, y(x_0) = 3 e y'(x_0) = 4.$
- 6. Nun certo cultivo de bacterias a velocidade de crecemento é directamente proporcional ó número presente, e observouse que este se duplica ó cabo de catro horas. Estabrece a lei de crecemento e acha o número de bacterias no cultivo transcurridas doce horas.
- 7. Segundo a lei de Newton, a velocidade a que se arrefría unha substancia ó aire libre é proporcional á diferencia entre a temperatura da devandita substancia e a do aire. Se a temperatura do aire é 30°, e a substancia arrefríase de 100° a 70° en 15 minutos, acha o instante no que a súa temperatura é de 40°.
- 8. Se a poboación dun país se duplica en 50 anos, ¿en cantos anos será o triple, supoñendo que a velocidade de aumento é proporcional ó número de habitantes?
- 9. O radio descompónse a unha velocidade proporcional á cantidade presente. Se a metade da cantidade orixinal desaparece en 1600 anos, acha a porcentaxe de perda en 100 anos.
- 10. Acha a curva tal que en cada punto (x, y) o segmento que a tanxente intercepta no eixe y é igual a $2xy^2$.

- 11. Acha a familia de curvas para as que a lonxitude da parte da tanxente entre o punto de contacto (x, y) e o eixe y é igual ó segmento interceptado en y pola tanxente.
- 12. Acha a ecuación da curva para a que
 - a) a normal nun punto calquera pasa pola orixe,
 - b) a pendente da tanxente nun punto calquera é a metade da pendente da recta que vai da orixe ao punto,
 - $c)\,$ a normal nun punto calquera e a recta que une es
e punto coa orixe forman un triángulo isós
celes que ten o eixex como base,
 - d) o segmento de perpendicular dende a orixe a unha recta tanxente da curva é igual á abscisa do punto de contacto.